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This article deals with the sequence !=[!n]n=0, 1, ... defined by the three-term
recurrence n=4!n(!n&1+!n+!n+1), n=1, 2, ..., and by the initial conditions
!0=0, !1=1(3�4)�1(1�4). Owing both to connections between the !n 's and
orthonormal polynomials with respect to the weight function w: w(x)=exp(&x4)
and to difficulties that arise when one attempts to compute its elements, the
sequence ! has been studied by many authors. Properties of ! have been shown and
computational algorithms provided. In this paper we show further properties of !.
First we establish bounds for the departure of ! from the sequence to which it
asymptotically converges. Then we prove that ! is an increasing sequence. � 1999
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1. INTRODUCTION

We consider the three-term recurrence

n=4!n(!n&1+!n+!n+1), n=1, 2, ..., (1.1)

and study the solution !=[!n]n=0, 1, ... satisfying the initial conditions

!0=0, !1=1(3�4)�1(1�4). (1.2)

Our interest in this matter can be motivated as follows.
First of all we point out that the recurrence in (1.1) and its solution !

defined by (1.1) and (1.2) are closely related to the most investigated Freud
system of polynomials.
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The Freud systems of polynomials have been introduced in [1], and
subsequently investigated in many papers (see, e.g., [2�4, 7, 9, 11, 13] and
[12, Sect. 4], where also extended references can be found), to approximate
functions in weighted L p spaces on the real line. They are orthonormal
with respect to even weight functions of the type

w: w(x)=|x|\ exp(&|x|;), \>&1, ;>0. (1.3)

We focus on the system of orthonormal polynomials [ pn]n=0, 1, ... , pn(x)=
#nxn+ lower terms, which is determined by the weight in (1.3) and by
assuming #n>0, n=0, 1, ..., and we denote by

xpn(x)=an+1 pn+1(x)+an pn&1(x), n=0, 1, ...,
(1.4)

a0=0, an=#n&1 �#n , n>0,

the three-term recurrence that defines such a system [ pn]n=0, 1, ... .
It has been proved by Freud in [3] that, in the case of ;=4, the

sequence !=[!n]n=0, 1, ... , !n=a2
n , is the solution of

n+
\
2

[1&(&1)n]=4!n(!n&1+!n+!n+1), n=1, 2, ..., (1.5)

!0=0, !1=1((\+3)�4)�1((\+1)�4). (1.6)

Thus the solution ! gives the coefficients of the three-term recurrence (1.4).
This is of great interest since the an 's play a central role in many questions.
For instance, the greatest zero of pn can be expressed in terms of an (see,
e.g., [4, 8, 12]), so that any information about the asymptotic behavior of
the solution ! can be used to get estimates of the greatest zeros of the pn 's.
Another interesting application is shown in [5]. Here the an 's are used to
study electrostatic interacting particle models associated with Freud
weights. Special attention is given to the case \=0, ;=4, showing that it
is possible to express the equilibrium energy of the model entirely in terms
of the an 's given by (1.1) and (1.2).

A second reason of interest in the subject is that the solution ! defined
by (1.5) and (1.6) is the unique nonnegative solution of the recurrence in
(1.5) no matter what \>&1 is (see [6, 10]). This adds interest to the
matter as it implies that the computational problem and the algorithm one
naturally derives from (1.5) and (1.6) will necessarily be, respectively, ill-
conditioned and unstable. Effective methods and stable algorithms to
compute subsequences of ! can be found in [6].

In this paper we consider the particular case of \=0, ;=4, that leads
to the recurrence (1.1) and to the sequence ! defined by (1.1) and (1.2).

The outline of the article is as follows. In Section 2 we briefly introduce
the results from [6] we will use in the sequel, along with the basic notation
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and definitions we require. In Section 3 some preliminary results are
proved. Finally, Section 4 deals with our main results. First (Theorem 4.1)
we give an estimate of the departure of ! from the sequence

': 'n=
- n

2 - 3
, n=0, 1, ..., (1.7)

which has been proved in [3] enjoying the property

lim
n � �

'n

!n
=1. (1.8)

Then (Theorem 4.2) we use this estimate to prove that the solution !
defined by (1.1) and (1.2) is an increasing sequence.

2. PRELIMINARIES

The basic notation that will be used in this paper is as follows:

R the set of all real numbers.

Rn the n-dimensional real linear space.

N the set of nonnegative integers.

N+ the set of positive integers.

Fn : R2 � R, Fn(t1 , t2)= 1
2(&t1&t2+- (t1+t2)2+n), n # N+.

Gn : R � R, Gn(t)= 1
2(&2t+- 4t2+n), n # N.

X the linear space of the sequences x=[xi] i # N , y=[ yi] i # N , etc.

T: X � X; T(x): (T(x))0=0, (T(x))n=Fn(xn&1 , xn+1), n # N+.

S: X � X; S(x): (S(x))n=Gn(xn), n # N.

Also, we need some definitions.
Let !(k), '(k), k # N, be the sequences defined by

!(0)=0, !(k)=T(!(k&1)), k # N+, (2.1)

'(0)=0, '(k)=S('(k&1)), k # N+. (2.2)

One has

!(1) : ! (1)
n =

1
2

- n, n # N, (2.3)

'(1)=!(1), '(2) : ' (2)
n =

- 2&1
2

- n, n # N. (2.4)
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The operator T, as well as the sequences !(k), k # N, are the same as the
operator T and the sequences !(k), k # N, considered by Lew and Quarles
[6]. In [6] it has been also proved that one has

!(0)<!(2)< } } } <!(2k&2)<!(2k)< } } } <!< } } }

<!(2k+1)<!(2k&1)< } } } <!(3)<!(1), (2.5)

and

lim
k � �

! (k)
n =!n , n # N+. (2.6)

The results in (2.5) and (2.6), in addition to the one in (1.8), play an
important role through the article.

Another result in [6] that will be mentioned later (see Remark 4.2) is an
asymptotic series for !n . We write it in the form

(12�n)1�2 !n=1+
1

24n2&
7

576n4+ } } } . (2.7)

3. SOME LEMMAS

In this section we prove some lemmas. Lemma 3.1 is used to prove that
the sequences !(k), k # N+, in (2.1) are contained in the region R defined
in (3.1). Lemma 3.6 shows that also the sequences '(k), k # N+, in (2.2)
belong to the inclusion region R. The remaining lemmas deal with sequences
x and y in R and their images T(x), T( y) and S(x), giving bounds for the
difference sequences T(x)&T( y) and T(x)&S(x).

The scheme is as follows. Lemma 3.1 is used in Lemma 3.4. Lemma 3.2
is used in Lemma 3.3. Lemma 3.5 is used in Lemma 3.6. Finally, Lemmas
3.3, 3.4, 3.5, and 3.6 are used to prove Theorem 4.1 in Section 4.

A straightforward computation leads to the following lemma.

Lemma 3.1. Let x: xn=c - n, n # N, where c is a positive constant. One
has

(T(x))n>(S(x))n , n # N+.

Now observe that from (2.1)�(2.4) and Lemma 3.1 it follows

!(2)>'(2).
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Thus, using (2.3) again and the result in (2.5), we can assert that the
sequences !(k), k # N+, satisfy the restriction

- 2&1
2

- n�! (k)
n �

1
2

- n, n # N, k # N+,

so that they are contained in the region

R={(t, u) # R2: 0�t<+�,
- 2&1

2
- t�u�

1
2

- t= . (3.1)

Lemma 3.2. Let x, y be two sequences contained in the region R. Moreover,
let

|xn& yn |�=n , n # N+.

Then, for each n�3, one has

|(T(x))n&(T( y))n |�C1(=n&1+=n+1), (3.2)

where

C1=0.311017763... . (3.3)

Proof. Since, for any x # X, (T(x))n depends only on xn&1+xn+1 , we
can write

(T(x))n&(T( y))n=un(an)&un(bn), n # N+,

where un : R � R is the function defined by

un(_)= 1
2 (- _2+n&_), (3.4)

and an=xn&1+xn+1 , bn= yn&1+ yn+1 .
We shall prove the bound in (3.2) by using the Lagrange formula.
First we consider the derivative u$n of the function in (3.4). A standard

argument proves that u$n is a negative increasing function in R. Since both
x and y are assumed to belong to the inclusion region R, we have

an , bn�zn :=
- 2&1

2
(- n&1+- n+1)

and, consequently,

|(T(x))n&(T( y))n |=|un(an)&un(bn)|�|u$n(zn)| |an&bn |

=|u$n(zn)| |xn&1+xn+1& yn&1& yn+1 |

�|u$n(zn)| (=n&1+=n+1), n # N+.
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Second, we replace |u$n(zn)| with maxn�3 |u$n(zn)|, which is equal to
|u$3(z3)| since the sequence [u$n(zn)] is easily seen to be a negative and
increasing sequence. Now the proof can be concluded by observing that
|u$3(z3)| is equal to the constant C1 in (3.3). K

Lemma 3.3. Let x, y be two sequences contained in the region R. Let

|xn& yn |�=n , n # N+,

and

=n=
K

n - n
, (3.5)

where K is a positive constant.
Then, for each n�3, one has

|(T(x))n&(T( y))n |�C2

K

n - n
, (3.6)

where

C2=0.773388078... . (3.7)

Proof. The hypotheses of this lemma imply those of Lemma 3.2. So we
can use (3.2) and write, taking (3.5) into account,

|(T(x))n&(T( y))n |

�C1K \ 1

(n&1) - n&1
+

1

(n+1) - n+1+
=

C1K

n - n \n - n \ 1

(n&1) - n&1
+

1

(n+1) - n+1++ . (3.8)

The function

v: v(t)=t - t \ 1

(t&1) - t&1
+

1

(t+1) - t+1+
is a positive and decreasing function in (1, +�). Indeed, standard
computations show that v$ is negative in (1, +�). Consequently, we have

n - n \ 1

(n&1) - n&1
+

1

(n+1) - n+1+�v(3), n�3, (3.9)
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and the assertion in (3.6) follows from (3.8) and (3.9) by observing that
C1v(3) is equal to the constant C2 in (3.7). K

Remark 3.1. In the previous two lemmas we restricted ourselves to
prove inequalities (3.2) and (3.6) for n�3. In fact, considering n�2 in
Lemma 3.3 would have led to a bound (3.6) with a constant C2>1. Actually,
a constant C2 greater than 1 does not fit the sequel (see Theorem 4.1).

As Lemma 3.1, the following lemma deals with the applications of both
the operators T and S to a sequence x of the type

x: xn=c - n, n # N,

but now the restriction x # R is assumed.

Lemma 3.4. Let

x: xn=c - n, n # N, c # _- 2&1
2

,
1
2& . (3.10)

For each n�3 one has

0<(T(x))n&(S(x))n�
C3

n - n
, (3.11)

where

C3=0.019990444... . (3.12)

Proof. We divide the proof in four steps.
(I) We observe that from Lemma 3.1 it follows

0<(T(x))n&(S(x))n , n # N+. (3.13)

(II) We prove that

(T(x))n&(S(x))n< 1
2{n(c) 2n , n # N+, (3.14)

where

2n=2 - n&- n&1&- n+1

and

{n(c)=c&
c2

- 4c2+1

- n&1+- n+1

- n
.
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Proof. Simple calculations show that

(T(x))n&(S(x))n

=&1
2 [c2n&(- n+c2(2 - n)2&- n+c2 (- n&1+- n+1)2)].

Now we apply the Lagrange formula getting

(T(x))n&(S(x))n =
1
2 _c&

c2(- n&1+- n+1+�2n)

- n+c2(- n&1+- n+1+�2n)2& 2n ,

0<�<1. (3.15)

Then we observe that 2n is greater than zero and we obtain an upper-
bound for (T(x))n&(S(x))n by taking �=0 in the numerator of the ratio
in (3.15) and �=1 in the denominator. This leads to (3.14).

(III) We prove that

2n<
0.26

n - n
, n�3. (3.16)

Proof. This bound has been suggested by the limit relation

lim
t � +�

(2 - t&- t&1&- t+1) t3�2=0.25. (3.17)

First we prove that (3.16) is equivalent to the condition

8.45
n2 &

0.8788
n4 +

0.028561
n6 <1, n�3.

Then we observe that for n�3 one has

8.45
n2 &

0.8788
n4 +

0.028561
n6 <

8.45
n2 +

0.028561
n6 �

8.45
32 +

0.028561
36 <1.

This concludes the proof.

(IV) We prove that

{n(c)<0.15377265... . (3.18)

Proof. First we observe that, for any c, {n(c) is a decreasing sequence.
Thus, we can write

{n(c)�{3(c)=c&
- 2+2

- 3

c2

- 4c2+1
, n�3, c # _- 2&1

2
,

1
2& .
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Then we study {$3 and we find that {$3 decreases in [(- 2&1)�2, 1�2] and
vanishes at a point c* # ((- 2&1)�2, 1�2). As a consequence

{3(c)�{3(c*), n�3, c # _- 2&1
2

,
1
2& .

Finally, we use the fixed-point method to find c*, which is given by

c*=0.411905191... ,

and we compute {3(c*) obtaining (3.18).
Now we are in a position to conclude the proof. In fact, (3.13) proves the

left-hand side inequality in (3.11), whereas the right-hand side inequality in
(3.11) and the value of C3 in (3.12) follow from (3.14), (3.16), and (3.18).

K

We conclude this section with a few remarks and two lemmas related to
the function Gn defined in Section 2 and to the operator S.

The function Gn is a simplified version of Fn . It has been defined taking
into account that, actually, Fn is a function of t1+t2 . One has

Gn \t1+t2

2 +=Fn(t1 , t2).

In addition, function Gn leads to the operator S, which is such that

'=S('), (3.19)

where ' # R is the sequence defined in (1.7) and enjoying property (1.8).
The following lemma shows that S is a contractive map in the inclusion

region R and that the sequences '(k) it generates according to (2.2)
converge to '.

Lemma 3.5. One has

lim
k � �

' (k)
n ='n , n # N.

Proof. First we prove that S is a contractive map in R, namely that one
has

|S(x)&S( y)|<L2xy , L<1,

for any couple of sequences x, y # R satisfying the restriction

|x& y|<2xy .
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To do so, we observe that the derivative G$n of the function Gn is a negative
and increasing function in R. This follows by noting that Gn(t)=un(2t) (see
(3.4) for the definition of the function un) and recalling the behavior of u$n
observed in the proof of Lemma 3.2.

Consequently, one has

max
t # [((- 2&1)�2) - n, (1�2) - n]

|G$n(t)|= }G$n \- 2&1
2

- n+}
and an easy computation shows that |G$n(((- 2&1)�2) - n)| does not
depend on n and is a real number strictly less than 1. So we can set L equal
to this number, i.e.: L=|G$n(((- 2&1)�2) - n)|=0.617316567... .

Then the proof can be completed by a standard argument by observ-
ing that it follows from (2.4) that '(1) and '(2) lie on the boundary of R

(see (3.1)). K

Lemma 3.6. All sequences '(k), k�1, are of the type

'(k)=ck - n, (3.20)

where

ck # _- 2&1
2

,
1
2& . (3.21)

Proof. The assertion in (3.20) can be easily proved by induction using
the definitions of Gn , of S and of the sequences '(k). Then, taking into account
(2.3) and (2.4), (3.21) immediately follows from (3.20) and Lemma 3.5. K

4. MAIN RESULTS

The following theorem gives an estimate of the departure of the solution
! from the sequence ' in (1.7). It invokes Lemma 3.3, 3.4, 3.5, and 3.6.

Theorem 4.1. The sequence ! defined by (1.1) and (1.2) and the
sequence ' defined by (1.7) satisfy the condition

|!n&'n |�
C

n - n
, n�3, (4.1)

where

C=0.08821444... . (4.2)
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Proof. Consider the sequences

e(k): e (k)
n =|! (k)

n &' (k)
n |, n # N, k # N+.

From (2.4) it follows e(1)=0.
For k>1, we can write

e (k)
n =|(T(!(k&1)))n&(S('(k&1)))n |

� |(T(!(k&1)))n&(T('(k&1)))n |+|(T('(k&1)))n&(S('(k&1)))n |.

(4.3)

For k=2, we can use (2.4) again to get |(T(!(1)))n&(T('(1)))n |=0.
Also, we observe that, by virtue of Lemma 3.6, '(1) is of the type (3.10), so
that we can apply Lemma 3.4 to get a bound for |(T('(k&1)))n&(S('(k&1)))n |.
In this way it follows from (4.3),

e (2)
n �0+

C3

n - n
, n�3. (4.4)

All steps related to k�3 require a same argument. They need also
Lemma 3.3.

Take k=3. Lemma 3.3 can be applied by virtue of (4.4). Again we can
invoke Lemma 3.6 to apply Lemma 3.4. From (4.3) we get

e(3)
n �

C2C3

n - n
+

C3

n - n
=C3

1+C2

n - n
, n�3. (4.5)

Repeating iteratively the same argument for k>3, we obtain the inequalities

e (k)
n �C3

1+C2+C 2
2+ } } } +C k&2

2

n - n
, n�3,

that for k=2 and 3 reduce to (4.4) and (4.5).
Finally, since C2 is less than 1 (see (3.7)), we can bound e (k)

n uniformly
with respect to k and write

e (k)
n =|! (k)

n &' (k)
n |�

C3

n - n

1&C k&1
2

1&C2

�
C3

1&C2

1

n - n
, k # N+, n�3.
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As k tends to infinity, from (2.6) and Lemma 3.5, we get

|!n&'n |�
C3

1&C2

1

n - n
, n�3,

which proves (4.1). Indeed, one has that C3 �(1&C2) is equal to the
constant C in (4.2). K

Remark 4.1. Even if we were not able to prove this, inequality (4.1)
actually holds also for n=1, 2. As a matter of fact,

!1&'1 =1(3�4)�1(1�4)&1�(2 - 3)=0.045104756... ,
(4.6)

!2&'2=1�(4!1)&!1&- 2�(2 - 3)=&0.01857892...�(2 - 2).

However, since (4.6) is obtained from !1 via (1.1), and this is the first step
of a strongly unstable algorithm, in the following theorem we shall use
inequality (4.1) only for n�3.

Remark 4.2. The asymptotic series for !n in (2.7) shows that

lim
n � �

n - n |!n&'n |=
1

48 - 3
.

As a consequence, the infinitesimal order in (4.1) can not be improved.

Theorem 4.2. The sequence ! is increasing.

Proof. First we prove that

!n<!n+1 , n�3, (4.7)

by using Theorem 4.1.
To do so, we write (4.1) in the form

- n

2 - 3
&

C

n - n
�!n�

- n

2 - 3
+

C

n - n
, n�3,

and then we observe that inequalities (4.7) are certainly verified if

- n

2 - 3
+

C

n - n
<

- n+1

2 - 3
&

C

(n+1) - n+1
, n�3. (4.8)
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These inequalities are easily seen to be equivalent to the conditions

1

2 - 3 C
>

1
n \1+�n+1

n ++
1

n+1 \1+� n
n+1+ , n�3. (4.9)

Since

1
n+1 \1+� n

n+1+ and 1+�n+1
n

are decreasing sequences and (4.9) is satisfied for n=3, inequalities (4.7)
are proved.

To complete the proof we need only to show that

!1<!2<!3 . (4.10)

The values of !1 , !2 and !3 have been computed with great accuracy in [6]
and we could conclude the proof by referring the reader to [6, Appendix A]
to verify (4.10).

However, for the sake of completeness, we prefer to reduce the proof of
(4.10) to conditions on !1=1(3�4)�1(1�4). To do so, we use the recurrence
relation (1.1) to express !2 and !3 in terms of !1 . One has

!3>!2 �
1�2&!2

2&!1 !2

!2

>!2 � !2<
&!1+- !2

1+4
4

�
1

4!1

&!1<
&!1+- !2

1+4
4

� 8!4
1&10!2

1+1<0

�
5&- 17

8
<!2

1<
5+- 17

8
, (4.11)

and

!2>!1 �
1�4&!2

1

!1

>!1

� !2
1<

1
8

, (4.12)

and, since (4.11) and (4.12) are true, the proof is completed. K
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